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ABSTRACT

Contrastive Learning (CL) has been proved to be a powerful self-

supervised approach for a wide range of domains, including com-

puter vision and graph representation learning. However, the incre-

mental learning issue of CL has rarely been studied, which brings

the limitation in applying it to real-world applications. Contrastive

learning identifies the samples with the negative ones from the

noise distribution that changes in the incremental scenarios. There-

fore, only fitting the change of data without noise distribution

causes bias, and directly retraining results in low efficiency. To

bridge this research gap, we propose a self-supervised Incremental
Contrastive Learning (ICL) framework consisting of (i) a novel Incre-

mental InfoNCE (NCE-II) loss function by estimating the change of

noise distribution for old data to guarantee no bias with respect to

the retraining, (ii) a meta-optimization with deep reinforced Learn-

ing Rate Learning (LRL) mechanism which can adaptively learn the

learning rate according to the status of the training processes and

achieve fast convergence which is critical for incremental learning.

Theoretically, the proposed ICL is equivalent to retraining, which

is based on solid mathematical derivation. In practice, extensive

experiments in different domains demonstrate that, without retrain-

ing a new model, ICL achieves up to 16.7× training speedup and

16.8× faster convergence with competitive results.

CCS CONCEPTS

• Computing methodologies→ Online learning settings; •

Information systems→ Data streams; Data stream mining.
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1 INTRODUCTION

Contrastive Learning (CL) is a widely used self-supervised learning

approach across a wide range of domains, such as computer vision

(CV) [5, 11], neural language processing (NLP) [19, 24, 41], and

graph representation learning (GRL) [32, 38, 44]. The main idea of

contrastive learning is to make representations of similar samples

close and distinct samples far away through a noise contrastive

estimation (NCE) [9, 10] loss function with the given noise distri-

bution [41]. Moreover, in real-world application scenarios, online

systems are expected to constantly face new data and learn incre-

mentally, which limits the applicability of contrastive learning. The

data distribution and noise distribution are incrementally observed

and the estimation by NCE is thus biased. Nevertheless, there is

little work to study the incremental learning issue of contrastive

learning (ICL, Incremental Contrastive Learning).

Incremental learning aims to learn the new data while not for-

getting the old data (see the formal definition in Definition 3). It re-

quires the learningmodel to face the stability-plasticity dilemma [27]

with the following three characteristics: (a) stability for the old

data, which means that the model should contain the ability to

remember and update the knowledge of the old data, (b) plasticity

for the new data, which requires that the model should be able

to adapt to the new data, (c) efficiency of the training process,

which helps the model update quickly in real-world applications,

especially in a streaming environment.
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Table 1: Comparison of different strategies.

Stability Plasticity Efficiency

Inference × × ✓

Fine-tuning × × ✓

Retraining ✓ ✓ ×
ICL (Ours) ✓ ✓ ✓

1 ✓ : “unbiased” or “high”, × : “biased” or “low”.

The major challenge of contrastive learning in the incremental

setting is how to estimate the change of the noise distribution. The

noise distribution in contrastive learning is used to sample the nega-

tive ones and is related to and close to the data distribution [10, 41].

Therefore, as the data change, the noise distribution also changes.

Based on the trained model, the old data has been learned through

NCE by contrasting the negative samples from the original noise

distribution. However, there is a bias in the estimation after giving

the new data since the noise distribution used for sampling the neg-

ative samples has changed. The existing NCE methods cannot be

applied to fit the change (we provide the bias analysis in Section 3).

Regardless of the trained model, retraining seems to be the best

way due to no bias in the process. However, it has a serious time-

consuming problem. Therefore, in this paper, we seek to answer the

question: can contrastive learning approaches be able to estimate the
old data through an unbiased NCE w.r.t. retraining, while learning
the new data efficiently?

The naive strategies (e.g., inference, fine-tuning, and retraining)

fail to answer this question due to the above three requirements of

incremental learning as shown in Table 1:

• Poor Stability. Without a carefully designed NCE strategy,

both inference and fine-tuning lead to a biased estimate due

to the change in the noise distribution. In addition, directly

fine-tuning the model on new data causes catastrophic for-

getting [26].

• Weak Plasticity. Inference is not capable of learning the

new data and fine-tuning is over-transferring, ignoring the

contribution of old data to the noise distribution. Moreover,

bias will continue to accumulate in practical online applica-

tions.

• Low Efficiency.While retraining a new model with all data

does not seem to have the above issues, the time cost is

unacceptable in real-world applications.

However, there is little work on incremental learning in CL, ex-

cept for applying the replay and distillation technique [4, 22]. More-

over, existing incremental learning approaches are hard to use for

self-supervised CL because they focus mainly on class-incremental

learning [25] and task-incremental learning [34]. Without any infor-

mation of labels and tasks, self-supervised incremental contrastive

learning is still facing a research gap.

Contributions. To this end, we propose an unbiased and effi-

cient self-supervised Incremental Contrastive Learning (ICL) frame-

work. First, we design an Incremental InfoNCE (NCE-II) loss func-

tion to fit the change of noise distribution. Furthermore, we accel-

erate the convergence by a meta-optimization algorithm with a

reinforced Learning Rate Learning (LRL) mechanism. Finally, we

conduct thorough experiments on four datasets of CV and GRL to

show the efficiency and effectiveness of ICL. Themain contributions

of this paper are summarized as follows:

• Leveraging a new metric for measuring the change of the

noise distribution, we design a novel NCE-II loss to theoreti-

cally achieve an unbiased ICL with respect to retraining. To

our best knowledge, it is the first attempt to study the issue

of unbiased incremental learning in self-supervised CL.

• We propose a meta-optimization algorithmwith LRL to adap-

tively learn the learning rates according to the status of the

training process for fast convergence.

• Extensive experiments demonstrate that ICL maintains high

efficiency in terms of training time and convergence epoch.

In addition, as an unbiased and efficient approach, ICL still

achieves competitive results.

2 BACKGROUND AND PROBLEM

FORMULATION

We first provide the background and problem formulation of con-

trastive learning and incremental contrastive learning.

Definition 1 (Contrastive Learning). Given the set of in-
put data 𝑋 B {𝑥𝑖 ∈ X}𝑁𝑖=1 of size 𝑁 and an encoder 𝜙 (·) : X → Z
mapping the inputs from the data space X into the latent space Z,
contrastive learning aims to train the encoder with a contrastive loss
function L designed to identify the positive sample 𝑥+

𝑖
for a given 𝑥𝑖 .

In this paper, we consider the most commonly used contrastive

learning framework [5, 11, 24, 44] with the InfoNCE (denoted as

NCE-I in this paper) as the loss function L.

Definition 2 (InfoNCE (NCE-I)). Given the set of input data
𝑋 B {𝑥𝑖 ∈ X}𝑁𝑖=1 and an encoder 𝜙 (·), the InfoNCE (NCE-I) loss is
defined as:

L𝐼 ,𝑋
𝑖

= − log
𝑓 (𝑥𝑖 , 𝑥+𝑖 )

𝑓 (𝑥𝑖 , 𝑥+𝑖 ) + 𝐾E𝑥−𝑖 ∼𝑝𝑋𝑛 𝑓 (𝑥𝑖 , 𝑥
−
𝑖
) , (1)

where 𝑓 (·, ·) B exp(𝑠𝑖𝑚(𝜙 (·), 𝜙 (·))/𝜏) with 𝑠𝑖𝑚(·, ·) as the similar-
ity measurement and 𝜏 as the temperature parameter, 𝑥+

𝑖
represents

the positive sample generated by a data augmentation module, 𝑥−
𝑖

is one of the negative samples from a noise distribution, and 𝐾 is a
hyperparameter representing the ratio of negative samples to positive
samples.

Noise Distribution. The InfoNCE loss follows the noise con-

trastive estimation (NCE) principle [9, 10], which learns to deduce

the properties of data𝑋 by comparing the difference to the reference

(noise) data 𝑌 . The noise data 𝑌 is an i.i.d. sample {𝑦1, 𝑦2, . . . , 𝑦𝐾 }
from a random variable with noise distribution 𝑝𝑛 . In this paper, the

negative ones are from the data distribution by a uniform sampling

which can be approximated by Monte Carlo sampling [35]. We

randomly sample a mini-batch of 𝐾 + 1 inputs and treat the others

as the negative samples for each one.

Definition 3 (Incremental Contrastive Learning).

Given an encoder 𝜙 (·) trained on old data 𝑋 B {𝑥𝑖 ∈ X}𝑁𝑖=1 with
a contrastive learning approach and the new data Δ𝑋 B {𝑥𝑁+𝑖 ∈
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X}Δ𝑁
𝑖=1

that has not been observed, the incremental contrastive learn-
ing aims to refine the encoder for adapting to the new data without
forgetting the knowledge of old data, i.e., stability and plasticity.

Noise Distribution Change. As mentioned above, the nega-

tive ones in contrastive learning are randomly sampled from the

dataset which changes in the incremental setting. That is, the noise

distribution changes.

Finally, we denote 𝑋 ′ B {𝑥𝑖 ∈ 𝑋 ∪ Δ𝑋 } as all data. For gen-
erality, we focus on one incremental step and note that the old

data 𝑋 represent the data used for training the encoder before and

preserved by the online system through a memory queue or replay

technique. Therefore, the study in this paper can be conveniently

implemented to a number of contrastive learning and incremental

learning methods.

3 METHODOLOGY

In this section, we propose an unbiased and efficient self-supervised

Incremental Contrastive Learning (ICL) framework.

3.1 Overall Framework

The proposed ICL framework consists of the following components:

(1) Augmentation. Given each input 𝑥𝑖 (e.g., an image or a

graph), two augmentations 𝑞1 (·|𝑥𝑖 ) and 𝑞2 (·|𝑥𝑖 ) are applied
to 𝑥𝑖 to obtain a positive pair (𝑥𝑖 , 𝑥+𝑖 ). For different domains

of datasets (i.e., CV and GRL), different augmentation strate-

gies are applied (Section 4.1.3).

(2) Encoder. An encoder 𝜙 (·) : X → Z is used to learn the

latent representations for each positive pair (𝑥𝑖 , 𝑥+𝑖 ). Specifi-
cally, a ResNet-18 [12] and a GCN [15] are used for CV an

GRL respectively.

(3) Incremental InfoNCE (NCE-II). To resolve the problems

mentioned in Section 1, we design a novel loss function,

namedNCE-II, to eliminate the bias caused by the change of

noise distribution. Furthermore, the proposed NCE-II main-

tains equivalence with retraining, and the error bound of

final empirical risk tends to zero (Section 3.2).

(4) Meta-optimization with Learning Rate Learning (LRL).

In order to further improve the efficiency of the training

process, which is crucial for incremental learning, we pro-

posed a new meta-learning optimization algorithm with a

reinforced learning rate learning mechanism for fast conver-

gence (Section 3.3).

In the following sections, we introduce the proposed objective

function (NCE-II) and optimization algorithm (meta-optimization

with LRL).

3.2 Objective Function: Unbiased Estimation

We split the final objective function into two parts: one for old data

and the other for new data. The new data Δ𝑋 can be learned by

NCE-I with the noise distribution 𝑝𝑋
′

𝑛 :

L𝐼 ,𝑋
′

𝑖
= − log

𝑓 (𝑥𝑖 , 𝑥+𝑖 )
𝑓 (𝑥𝑖 , 𝑥+𝑖 ) + 𝐾E𝑥−

𝑖
∼𝑝𝑋 ′𝑛

𝑓 (𝑥𝑖 , 𝑥−𝑖 )
. (2)

However, for stability as discussed in Section 1, InfoNCE loss

cannot serve as the objective function for the old data. Given the

encoder trained with the old data 𝑋 , it is necessary to find an opti-

mizationmethod for𝑋 , so that the entire training process (including

the incremental learning phase) with 𝑋 is unbiased.

3.2.1 Motivation: Change of Noise Distribution. In order to elimi-

nate the deviation caused by the change of the noise distribution in

the learning of the old data, we first propose a metric for measuring

the change ratio of the noise distribution.

To explore how noise distribution works in contrastive learning,

we first rewrite the InfoNCE loss into the form of softmax-based

categorical cross-entropy:

L𝐼 ,𝑋
𝑖

=
∑︁
𝑥 𝑗 ∈𝑋

1𝑖=𝑗 · − log
(

𝑓 (𝑥𝑖 , 𝑥+𝑗 )∑
𝑥𝑘 ∈𝑋 𝑓 (𝑥𝑖 , 𝑥

+
𝑘
)

)
(3)

=
∑︁
𝑥 𝑗 ∈𝑋

1𝑖=𝑗 · − log
(
softmax𝑋 (𝑓 (𝑥𝑖 , 𝑥+𝑗 ))

)
. (4)

The softmax term in Eq. (4) represents the final prediction result of

the model, in which the sum of predicted probabilities for all classes

changes with the noise distribution, that is,

∑
𝑥𝑘 ∈𝑋 𝑓 (𝑥𝑖 , 𝑥

+
𝑘
) →∑

𝑥𝑘 ∈𝑋∪Δ𝑋 𝑓 (𝑥𝑖 , 𝑥
+
𝑘
). Therefore, we propose to use the ratio of the

sum of predicted probabilities for new classes to the one for old

classes.

Definition 4 (Change Ratio of Noise Distribution).

Given the noise distribution 𝑝𝑋𝑛 of old data 𝑋 and 𝑝Δ𝑋𝑛 of new data
Δ𝑋 , the change ratio is represented by

𝑟𝑋→Δ𝑋
𝑖 =

∑
𝑥 𝑗 ∈Δ𝑋∪{𝑥𝑖 } 𝑓 (𝑥𝑖 , 𝑥

+
𝑗
)∑

𝑥𝑘 ∈𝑋 𝑓 (𝑥𝑖 , 𝑥
+
𝑘
) (5)

=
𝑓 (𝑥𝑖 , 𝑥+𝑖 ) + 𝐾E𝑥−𝑖 ∼𝑝Δ𝑋𝑛 𝑓 (𝑥𝑖 , 𝑥−𝑖 )
𝑓 (𝑥𝑖 , 𝑥+𝑖 ) + 𝐾E𝑥−𝑖 ∼𝑝𝑋𝑛 𝑓 (𝑥𝑖 , 𝑥

−
𝑖
) . (6)

With the proposed change ratio in Eq. (6), we can measure how

much the noise distribution changes. If the new data maintain the

same noise distribution as the old data (i.e., 𝑝Δ𝑋𝑛 = 𝑝𝑋𝑛 ), the change

ratio 𝑟𝑋→Δ𝑋
𝑖

equals 1. The deviation of 𝑟𝑋→Δ𝑋
𝑖

from 1 reflects the

degree of change of noise distribution.

3.2.2 Objective Function: NCE-II Loss. Next, we design a novel

contrastive loss function, leveraging the change ratio of the noise

distribution.

Definition 5 (Incremental InfoNCE (NCE-II)). Given the
old data 𝑋 and new data Δ𝑋 , the loss function of the incremental
contrastive learning for old data is defined as

L𝐼 𝐼𝑖 = log

(
𝛼 · 𝑟𝑋→Δ𝑋

𝑖 + (1 − 𝛼) · 1
)

(7)

= log

(
𝛼 ·

𝑓 (𝑥𝑖 , 𝑥+𝑖 ) + 𝐾E𝑥−𝑖 ∼𝑝Δ𝑋𝑛 𝑓 (𝑥𝑖 , 𝑥−𝑖 )
𝑓 (𝑥𝑖 , 𝑥+𝑖 ) + 𝐾E𝑥−𝑖 ∼𝑝𝑋𝑛 𝑓 (𝑥𝑖 , 𝑥

−
𝑖
) + (1 − 𝛼) · 1

)
, (8)

where constant 𝛼 = Δ𝑁
𝑁+Δ𝑁 ∈ [0, 1) represents the growth ratio of the

data.

In NCE-II loss, the change ratio for each sample 𝑟Δ𝑋→𝑋
𝑖

is

weighted by a coefficient 𝛼 , which reflects the increment of the

data. Specifically, when there is no new data (i.e., 𝛼 = 0) or the

noise distribution remains the same (i.e., 𝑟𝑖,Δ𝑋→𝑋=1), the NCE-II
equals 0, which is in line with the intuition.
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Table 2: Bias of different strategies.

Old Data New Data

Inference log 𝑟𝑋→𝑋
′

𝑖
L𝐼 ,𝑋

′

𝑖

Fine-tuning log 𝑟𝑋→𝑋
′

𝑖
log 𝑟Δ𝑋→𝑋

′
𝑖

Retraining 0 0

ICL (Ours) 0 0

3.2.3 No Bias: Equivalence with Retraining. Given NCE-II, the en-

coder is trained on the old data 𝑋 with two contrastive loss func-

tions (Eq.(2) and Eq.(8)), the sum of which is equivalent to the loss

function of retraining on all data 𝑋 ′.

Theorem 1. For old data 𝑥𝑖 ∈ 𝑋 , the NCE-II with new data Δ𝑋
plus InfoNCE only with 𝑋 is equivalent to the one with all data 𝑋 ′,
i.e., L𝐼 ,𝑋

′

𝑖
= L𝐼 ,𝑋

𝑖
+ L𝐼 𝐼

𝑖
.

Proof. The proof is given in the online repositories
1
. □

Finally, the objective function of ICL is defined as

L =
∑︁
𝑥𝑖 ∈𝑋

L𝐼 𝐼𝑖 +
∑︁

𝑥𝑖 ∈Δ𝑋
L𝐼 ,𝑋

′

𝑖
, (9)

which is an unbiased estimation of both old data and new data w.r.t.

retraining. In Table 2, we provide the comparison of bias between

different strategies to show the superiority of the proposed method.

3.2.4 Bound Analysis. Although the proposed loss function NCE-II

is equal to the difference of InfoNCE with old data and all data, the

final empirical risk R during the entire training process is never-

theless different due to the change of data distribution. Therefore,

we provide the bound analysis to guarantee the correctness of the

proposed NCE-II.

Theorem 2. The difference between the empirical risk of themethod
with the proposed NCE-II and the retraining with InfoNCE throughout
the training process is bounded by𝛼R𝑜𝑙𝑑 , whereR𝑜𝑙𝑑 = 1

𝑁

∑𝑁
𝑖=1 L

𝐼 ,𝑜𝑙𝑑
𝑖

approaches zero as L𝐼 ,𝑜𝑙𝑑
𝑖

is minimized after the previous training
process on old data 𝑋 and the growth ratio 𝛼 ∈ [ 0, 1). Then we have
𝛼R𝑜𝑙𝑑 → 0.

Proof. The proof is given in the online repositories. □

3.2.5 Complexity Analysis. Given the number of epochs Δ𝑇 in the

incremental learning process, the time complexity of the proposed

method is O(Δ𝑇 ((2𝐾 + 1)𝑁 + (𝐾 + 1)Δ𝑁 )𝐶), where 𝐶 represents

for the time consuming of the encoder and function 𝑓 (·, ·). As the
parameters of the encoder have been optimized, the number of

epochs is much smaller than the one of the retraining process. We

further guarantee it in the next section.

1
Proofs are at https://github.com/RingBDStack/ICL-Incremental-InfoNCE.

3.3 Optimization: Efficient Adaption

In order to further improve the efficiency of the proposed method

and ensure that the number of epochs in the incremental learning

process is smaller, we next propose a meta-optimization algorithm

and a Learning Rate Learning (LRL) mechanism by reinforcement

learning (RL) to quickly adapt to the new data.

Formally, the optimization of the encoder is defined as

\𝑡+1 ← \𝑡 − 𝑙𝑟 ∗ ∇\L(𝜙 (𝑋 ;\𝑡 )), (10)

where 𝑙𝑟 is the learning rate and ∇\L(𝜙 (𝑋 ;\𝑡 )) is the gradient in
the time step 𝑡 .

3.3.1 Meta-optimization. For plasticity, we treat the optimization

of ICL for new data as transfer learning (the new data may con-

tain new classes or from different domains) and propose a meta-

optimization strategy for fast adaption, which is formulated as a

form of model agnostic meta-learning (MAML) [8].

We treat the old data 𝑋 as the support set and the new data Δ𝑋
as the query set. In the meta-training stage, we calculate the loss

on the support set by Eq.(8) and gain the new parameters \ ′ in a

few gradient descent steps:

\ ′ = \ − 𝑙𝑟𝑠 ∗
𝜕
∑
𝑥𝑖 ∈𝑋 L

𝐼 𝐼
\
(𝜙 (𝑥𝑖 ;\ ))

𝜕\
, (11)

where 𝑙𝑟𝑠 is the learning rate of the meta-training process on the

support set 𝑋 . For fairness, the number of steps is set to max{⌈(1−
𝛼)/𝛼⌉, 1} to ensure that the total number of samples trained in one

epoch and the size of all data are as equal as possible, under the

premise that there is at least one support sample for each query.

In the meta-testing stage, after obtaining the adapted parameters

\ ′, we update the parameters \ on the query set with

\ ← \ − 𝑙𝑟𝑞 ∗
𝜕
∑
𝑥𝑖 ∈Δ𝑋 L

𝐼 ,𝑋 ′

\
(𝜙 (𝑥𝑖 ;\ ′))

𝜕\
, (12)

where 𝑙𝑟𝑞 is the learning rate of the meta-testing process on the

query set Δ𝑋 .

3.3.2 Learning Rate Learning (LRL). The learning rate for gradient

descent is commonly set as a hyperparameter and needs to be

manually searched for the optimal value. However, it is a challenge

to determine the values of two learning rates (𝑙𝑟𝑞 and 𝑙𝑟𝑠 ) in our

proposed meta-optimization. It is (a) unreasonable to simply set the

two values to the same or use the previous one because the two

learning rates are used for different training processes and data, (b)

hard to search for the optimal value due to the large searching space,

and (c) the change rules of learning rates should be automatically

learned according to the status of the training environment instead

of applying the human-designed ones. Therefore, we aim to find a

solution that can adaptively control learning rates while speeding

up the convergence process.

We proposed a Learning rate Learning (LRL) mechanism to

learn the two learning rates (𝑙𝑟𝑠 and 𝑙𝑟𝑞) adaptively according

to the current state of the encoder in a reinforcement learning

approach [14, 20, 43]. In our reinforcement learning setting, we

propose to use a function F to generate the state 𝑠𝑡 which en-

codes the observation of the training process (the inputs 𝑋 and the

parameters \𝑡 ) at the time step 𝑡 :

𝑠𝑡 = F (𝑋, \𝑡 ). (13)
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Figure 1: An overview of ICL. (a) The proposed Incremental InfoNCE (NCE-II) to fit the change of noise distribution 𝑝𝑛 . (b) The

proposed meta-optimization where the old data 𝑋 is treated as the support set in the meta-training stage and the new data Δ𝑋
is treated as the query set in the meta-testing stage. (c) The proposed Learning Rate Learning (LRL) mechanism which uses the

current loss as state and loss decrement as reward to generate the learning rates (𝑙𝑟𝑠 and 𝑙𝑟𝑞) as actions for meta-optimization.

The action 𝑎𝑡 is defined as the learned learning rate based on the

state 𝑠𝑡 and 𝑎𝑡 ∈ R is a continuous value.

To resolve the continuous action space issue, [43] uses an actor-

critic algorithm [36, 39] to generate the learning rate, employing

two neural networks: the actor network for learning rate gener-

ation and the critic network for criticizing the actions. However,

because the inputs of the actor network are ordered and related (i.e.,

not i.i.d.), the reinforcement learning process is therefore unstable

and problematic [28]. Therefore, we propose to use the Deep De-

terministic Policy Gradient (DDPG) to learn the two learning rates

respectively, which contains the experience replay mechanism to

resolve the i.i.d. issue and the separate target network mechanism

for a stable training [21].

In general, DDPG networksD = {`,𝑄, `′, 𝑄′} consist of the (on-
line) actor network ` (𝑠 |\` ) and (online) critic network 𝑄 (𝑠, 𝑎 |\𝑄 ),
and the target actor network `′ and the target critic network 𝑄 ′

with the same initial weights as the online ones. We first select an

action 𝑎𝑡 in step 𝑡 as

𝑎𝑡 = ` (𝑠𝑡 |\` ) + N𝑡 , (14)

where N is the Ornstein-Uhlenbeck (OU) process [40] to generate

noise for action exploration. Next, the action 𝑎𝑡 is executed (up-

dating encoder’s parameters with 𝑎𝑡 as the learning rate) and the

new state 𝑠𝑡+1 and reward 𝑟𝑡 are observed. As the aim of LRL is

to accelerate the convergence, we define the reward 𝑟𝑡 as the loss

decrement:

𝑟𝑡 = L𝑡 − L𝑡+1 . (15)

Finally, we optimize the the critic network using Temporal-Difference

(TD) learning with a replay buffer and actor network with the chain

rule [21]. The target networks are updated by a momentum mecha-

nism. Please refer to the online repositories for more details.

4 EXPERIMENT

Extensive experiments across two domains, computer vision and

graph representation learning, are conducted to demonstrate the

high efficiency of the proposed unbiased ICL
2
framework. In addi-

tion, ICL also achieves competitive results. We further provide the

incremental setting analysis and ablation study.

4.1 Experimental Settings

4.1.1 Datasets. We use four benchmark datasets across computer

vision (CV) and graph representation learning (GRL). For CV, we

use the following two datasets: (a) ImageNet is a benchmark dataset

consisting of around 1.28 million images [6]. In order to reduce the

influence of additional factors for an accurate efficiency evaluation,

we extract a subset with 2 classes, named ImageNet-2, to manage

that the entire training process can be completed on 1 GPU within

6 hours. (b) MNIST is a handwritten digit dataset [16]. Similarly,

we extract a subset with 2 classes, named MNIST-2. For GRL, we

use the following two datasets: (a) PROTEINS is a bioinformatics

dataset with 1,113 molecular graphs [29]. (b) REDDIT is a social

network dataset consisting of 2,000 graphs in 2 classes [29]. We use

Local Degree Profile (LDP) algorithm [2] to generate node features.

4.1.2 Baselines and ICL Variants. We compare four baselines in-

cluding the simple strategies (retraining and fine-tuning) and com-

monly used techniques (replay and distillation).

• Retraining uses both old data and new data to train a new

encoder. Since the aim of this study is to find an approach for

unbiased estimation, we first compare ICL with retraining

which serves as the baseline of efficiency and the upper

bound of effectiveness.

• Fine-tuning updates the parameters of the pre-trained en-

coder using the new data.

2
Code is available at https://github.com/RingBDStack/ICL-Incremental-InfoNCE.
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Table 3: Classification results of running time and convergence epoch on CV datasets. (bold: best; underlined: runner-up)

Dataset ImageNet-2 MNIST-2

Avg. Rank

Growth Rate 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7

Metric Time Epoch Time Epoch Time Epoch Time Epoch Time Epoch Time Epoch Time Epoch

Retraining 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x - -

Fine-tuning 10.7x 3.2x 3.9x 2.0x 2.2x 1.6x 12.3x 3.6x 5.5x 2.6x 3.8x 2.7x 2.3 3.6

Replay 3.4x 2.0x 2.0x 1.6x 3.4x 2.7x 2.8x 2.6x 3.5x 2.5x 3.2x 2.4x 4.3 4.5

Distillation 6.9x 2.9x 2.1x 1.4x 2.2x 1.5x 7.8x 3.0x 4.4x 2.8x 3.1x 2.2x 4.0 4.8

ICL (Ours) 11.2x 16.8x 6.2x 13.2x 5.9x 12.7x 14.2x 10.6x 16.7x 12.7x 6.4x 7.1x 1.0 1.0

ICL (w/o LRL) 9.6x 14.7x 3.4x 5.3x 1.1x 2.2x 1.0x 1.0x 2.4x 2.5x 1.5x 2.3x 5.2 4.0

ICL (w/o M) 9.2x 15.7x 4.8x 8.1x 1.7x 3.8x 1.1x 1.3x 1.2x 1.5x 1.0x 1.2x 5.3 4.5

ICL (w/o M+LRL) 9.8x 16.4x 1.6x 2.7x 1.0x 1.3x 1.7x 1.7x 1.3x 1.3x 1.2x 1.3x 5.7 5.3

Table 4: Classification results of running time and convergence epoch on GRL datasets. (bold: best; underlined: runner-up)

Dataset PROTEINS REDDIT

Avg. Rank

Growth Rate 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7 𝛼 = 0.3 𝛼 = 0.5 𝛼 = 0.7

Metric Time Epoch Time Epoch Time Epoch Time Epoch Time Epoch Time Epoch Time Epoch

Retraining 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x 1.0x - -

Fine-tuning 25.7x 8.0x 8.1x 3.9x 2.7x 1.9x 14.4x 1.1x 5.5x 2.9x 1.2x 0.9x 1.7 3.8

Replay 2.9x 2.1x 1.6x 1.0x 1.4x 1.4x 2.9x 2.1x 2.0x 1.4x 1.3x 1.1x 4.8 5.8

Distillation 18.2x 7.3x 5.2x 2.7x 0.9x 0.8x 2.4x 1.5x 2.7x 1.6x 1.1x 0.9x 4.8 5.3

ICL (Ours) 10.1x 10.5x 5.8x 6.1x 2.6x 2.7x 2.7x 2.5x 2.9x 3.1x 2.3x 3.2x 3.0 1.8

ICL (w/o LRL) 3.8x 14.6x 1.6x 1.7x 1.0x 1.1x 3.4x 3.3x 2.7x 2.9x 2.6x 3.6x 3.8 3.0

ICL (w/o M) 2.6x 3.6x 2.1x 2.9x 1.4x 2.1x 3.0x 3.2x 1.4x 1.6x 1.2x 1.3x 5.0 3.7

ICL (w/o M+LRL) 2.5x 2.9x 1.9x 2.0x 1.1x 1.2x 5.9x 5.8x 2.2x 2.4x 2.5x 2.5x 4.1 4.0

Furthermore, since ICL is under the self-supervised setting which

lacks related research, we survey the replay and distillation tech-

nique used in incremental learning [3, 4, 7, 22, 33].

• Replay uses the previously seen data (partially stored old

data) and the new data to train the encoder for avoiding

catastrophic forgetting. classes,

• Distillation learns a more compact encoder from the old

one to prevent over-drift of representations from previous

data when learning new ones.

For fairness, we use the exact same network architecture for all

methods.

We further introduce the following three variants of ICL to verify

the effectiveness of the components (LRL and meta-optimization):

• ICL without LRL mechanism (w/o LRL), i.e., with NCE-II and

meta-optimization.

• ICL without meta-optimization (w/o M), i.e., with NCE-II

and LRL only generating one learning rate.

• ICL without meta-optimization and LRL mechanism (w/o

M+LRL), i.e., only with NCE-II.

4.1.3 Implementation Details. We adopt a two-stage scheme [17,

18, 44]. In the training process, for fairness, all of the methods use

the same single encoder to generate the representations. In the

testing process, an extra SVM classifier [44] is trained with the

fixed embedding for evaluation. In order to evaluate the efficiency

of the methods more accurately and reduce the influence of external

factors, we conduct each experiment on one single Nvidia V100 32G

GPU for 5 times independently. We record the mean value as the

final accuracy for each experiment and omit the standard deviations

(all deviations are around 0.01). (a) The encoder we have used for

CV is ResNet-18 [12] and a two-layer Graph Convolution Network

(GCN) [15] with 32 hidden units is used for GRL. (b) We choose

{random resizing, 224×224-pixel cropping, random color jittering,

random grayscale conversion, random horizontal flip} [11, 42] as

the data augmentation for images, and randomly sample one from

{random node dropping, random node attribute masking, random

subgraph selection} [44] for GRL. (c) The similarity measurement

we have used is the cosine similarity function 𝑠𝑖𝑚(𝑧𝑖 , 𝑧 𝑗 ) B 𝑧𝑖 ·
𝑧 𝑗/| |𝑧𝑖 | | · | |𝑧 𝑗 | |. (d) The state generated by function F in LRL is

defined as the average loss of the current training process on the

mini-batch data. (e) A two-layer LSTM with 20 hidden units is used

as the actor network and a three-layer neural network (NN) with

10 hidden units is used as the critic network.

4.1.4 Parameters Setting. For common hyper-parameters, the num-

ber of negative samples 𝐾 = 31 (i.e., a batch size 𝑏𝑠 = 32), the initial

learning rate is searched from 𝑙𝑟 ∈ {10−3, 10−4, 10−5}, the temper-

ature parameters 𝜏 = 0.1, and the patience to wait for convergence

is 50 epochs (i.e., the process is terminated when the loss no longer

drops for 50 epochs). For LRL, the momentum term𝑚 = 10
−3
.
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4.2 Efficiency Analysis: How fast ICL is?

We first perform the image and graph-level classification on CV

and GRL datasets. To simulate different incremental scenarios, we

randomly split each dataset into the old data and new data ac-

cording to the given growth ratio 𝛼 . As an unbiased approach, the

proposed ICL framework achieves high efficiency and fast conver-

gence. Specifically, we have the following observations.

High Efficiency. The proposed ICL framework has a great supe-

riority in terms of training time consumption as shown in Table 3

and Table 4, where we use the speedup of training time compared

with retraining 𝑠𝑒,𝑖 = 𝑡𝑖𝑚𝑒𝑟𝑒𝑡𝑟𝑎𝑖𝑛/𝑡𝑖𝑚𝑒𝑖 for method 𝑖 as the metric.

(a) For CV datasets, ICL achieves a speedup of up to 16.7× w.r.t.

retraining. Moreover, without the meta-optimization and LRL (i.e.,

only applying NCE-II), ICL still brings us a speedup of up to 9.8×.
Overall, it is obvious that ICL is the most efficient approach in all

of the cases on CV datasets, even compared with fine-tuning and

distillation which exclude the need of training old data. (b) For GRL

datasets, ICL also achieves a speedup of up to 10.1×, and still 5.9×
without the meta-optimization and LRL. It is worth mentioning

that ICL can beat replay and distillation with only NCE-II.

Fast Convergence. The proposed ICL framework gives the

fastest convergence speed. We use the speedup of convergence

epoch compared with the retraining 𝑠𝑐,𝑖 = 𝑒𝑝𝑜𝑐ℎ𝑟𝑒𝑡𝑟𝑎𝑖𝑛/𝑒𝑝𝑜𝑐ℎ𝑖 for
method 𝑖 as its metric. (a) For CV datasets, ICL achieves a speedup

of up to 16.8× compared with retraining and the improvements

are significant in all cases. Moreover, ICL only with NCE-II (w/o

M+LRL) still gains a speedup of up to 16.4×. Similar to training

time, the convergence speedup of ICL exceeds all methods. (b) For

GRL datasets, the experimental results are identical. ICL with its

variants achieves a speedup of up to 14.6×.
Therefore, the proposed ICL maintains significant advantages in

reducing training time and accelerating convergence. Furthermore,

although the time complexity of ICL is larger, the results still show

the superiority of ICL in terms of efficiency, which contributed to

the LRL mechanism.

4.3 Effectiveness Analysis: Does ICL impede

model?

As an unbiased and efficient approach, the proposed ICL also achieves

competitive performance as shown in Figure 2 and Figure 3. It is

clearly observed that applying ICL to a contrastive learning ap-

proach will not impede the representation ability of the model.

Specifically, the difference between ICL and the others falls in

[−0.0137, +0.0126] with an average improvement of 0.002.

4.4 Incremental Setting Analysis: When to use

ICL?

We study the change of speedup of training time and convergence

epoch with the variation of the growth ratio 𝛼 . For fairness, we

compare the unbiased methods (ICL and retraining) and report the

results in Figure 4. Specifically, we have the following findings.

Consistent Efficiency.We vary 𝛼 from 0.1 to 0.9 at 0.1 intervals,

i.e., simulating the amount of new data from 1/9 of the old data to

9 times the old data. Overall, ICL achieves a 2.2×-18.3× speedup of

training time and a 2.7×-22.9× speedup of convergence epoch.

Adaption Ability with a Large Ratio of New Data. The su-

periority of ICL in training time is obvious even when 𝛼 is large.

Moreover, from Table 3 and Table 4, ICL consistently achieves faster

convergence while the other baselines nearly equal the retraining.

Thus, ICL is more practical in scenarios where there is a large ratio

of new data.

Limited Superiority by the Ratio of New Data. As 𝛼 in-

creases, the speedup of ICL becomes smaller due to a large amount

of new data. Thus, overmuch new data leads to the weakening of

incremental learning strategies. However, ICL nevertheless gains a

2.2×-5.3× speedup when the amount of the new data is 9 times the

old one.

4.5 Ablation Study: How ICL works?

We further investigate the ablation study of the three important

components: the NCE-II loss, the meta-optimization algorithm, and

the LRL mechanism. We provide the loss change compared with

NCE-I and Adam in Figure 5.

NCE-II Loss is unbiased and useful. From Table 3 and Ta-

ble 4, it is noticed that ICL only with NCE-II (i.e., without meta-

optimization and LRL) still achieves a faster training and conver-

gence speed, up to 9.8× and 16.4× respectively. From Figure 5,

NCE-II’s decrease rate of loss is faster than only applying NCE-I,

which reflects that NCE-II helps to quickly adapt to new data with

an unbiased estimation.

Meta-optimization is essential. As shown in Table 3 and Ta-

ble 4, without meta-optimization, the efficiency is significantly low-

ered. Moreover, comparing ICL only with NCE-II and ICLwithmeta-

optimization, the efficiency is improved. Thus, meta-optimization

contributes considerably to fast adaption of new data.

Learning Rate Learning has a vital contribution to the

improvement of efficiency. From Table 3 and Table 4, without

LRLmechanism, the degree of improvement on efficiency is reduced.

In Figure 5, it is obvious that the loss declines faster with LRL

compared with the Adam algorithm.

5 RELATEDWORK

5.1 Contrastive Learning

Contrastive learning (CL) is a self-supervised approach that aims

at learning to discriminate the samples by contrasting the negative

ones [13, 17, 23]. Contrastive Predictive Coding (CPC) proposed

an InfoNCE loss to maximize the mutual information between the

sample and its positive one [37, 41]. Recently, InfoNCE loss has

been widely used in computer vision (CV). SimCLR and MoCo sub-

sequently use contrastive learning to generate the representations

of images through different data augmentation methods [5, 11]

and achieve comparable results with state-of-the-art supervised ap-

proaches. Furthermore, contrastive learning is also well researched

in graph representation learning (GRL). Graph Contrastive Coding

(GCC) and GrpahCL apply InfoNCE to learn the representation of

node and graph [32, 44]. The above studies follow a similar frame-

work to Definition 1 which is the backbone of ICL.

5.2 Incremental Learning

Incremental learning is a learning process where the new data is

continuously coming from the environment [1, 30, 31]. Most studies
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(a) ImageNet-2. (b) MNIST-2. (c) PROTEINS. (d) REDDIT.

Figure 2: Classification results of old data on four datasets. (R/T: Retraining; F/T: Fine-tuning; R/P: Replay; Dist.: Distillation)

(a) ImageNet-2. (b) MNIST-2. (c) PROTEINS. (d) REDDIT.

Figure 3: Classification results of new data on four datasets. (R/T: Retraining; F/T: Fine-tuning; R/P: Replay; Dist.: Distillation)

(a) ImageNet-2 (Time). (b) ImageNet-2 (Epoch).

(c) PROTEINS (Time). (d) PROTEINS (Epoch).

Figure 4: Speedup of unbiased methods (ICL and retraining)

with the variation of 𝛼 . For fairness, the biased ones (fine-

tuning, replay, and distillation) are excluded.

of incremental learning focus on supervised learning. For exam-

ple, iCaRL proposed an incremental classifier and representation

learning approach for supervised incremental learning [33]. In ad-

dition, [3] proposed an end-to-end incremental learning method

for class-incremental issue. However, these methods are hard to im-

plement into self-supervised contrastive learning due to the lack of

(a) ImageNet-2. (b) REDDIT.

Figure 5: Training process on ImageNet-2 and REDDIT.

labels. Recently, some works incorporate the replay and distillation

technique into CL [4, 22], while they still have the bias issue.

6 CONCLUSION

In this paper, we studied the unbiased incremental learning issue

in self-supervised contrastive learning and proposed Incremental
Contrastive Learning (ICL) framework. Specifically, we designed an

Incremental InfoNCE (NCE-II) loss function to give an unbiased

estimation of noise distribution change in incremental scenarios.

Moreover, we proposed a meta-optimization algorithm with Learn-

ing Rate Learning (LRL) mechanism to achieve fast convergence.

The experiments demonstrated the efficiency and effectiveness of

the proposed ICL framework.
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